
banner above paper title

Compress-and-Conquer for Optimal Multicore Computing ∗

Z. George Mou
Sinovate, LLC

gmou5813@gmail.com

Hai Liu Paul Hudak
Yale University

{hai.liu,paul.hudak}@yale.edu

Abstract
We propose a multicore programming paradigm called compress-
and-conquer (CC) that can be applied to a fairly broad range of
problems with optimal performance. Given a multicore system of
p cores and a problem of size n, the problem is first reduced to p
smaller problems, each of which can be solved independently of the
others (the compression phase). From the solutions to the p prob-
lems, a compressed version of the same problem of size O(p) is
deduced and solved (the global phase). The solution to the orig-
inal problem is then derived from the solution to the compressed
problem together with the solutions of the smaller problems (the
expansion phase).

There are several advantages of the CC paradigm. First, it re-
duces the complexity of multicore programming by allowing the
best-known conventional algorithm for a problem to be used in
each of the three phases. Second, it delivers programs with asymp-
totically optimal communication and operation-count complexity,
with speedup linear in the number of cores. Third, the expressive-
ness and computational power of CC subsumes that of mapReduce
and scan. Finally, it can be applied to a wide range of problems,
including scan, nested scan, second-order linear difference equa-
tions, banded linear systems, linear difference equations, and linear
tridiagonal systems. CC is not without limitations, however, and
therefore the class of problems that can be solved by CC is care-
fully examined and identified.

The CC paradigm has been implemented in Haskell as a mod-
ular, higher-order function, whose constituent functions can be
shared by seemingly unrelated problems. This function is compiled
into low-level Haskell threads that run on a multicore machine, and
performance benchmarks confirm the theoretical analysis.

Keywords multicore programming, parallel computing, program-
ming paradigm, functional programming, scan, difference equa-
tions, tridiagonal systems

1. Introduction
Divide-and-conquer (DC) has been shown to be one of the most
effective paradigms for deriving elegant and efficient parallel solu-
tions to a wide variety of problems [12, 13]. The essence of divide-
and-conquer is to solve a large problem by recursively reducing it to

∗ This research was supported in part by a grant from Microsoft Research.

[Copyright notice will appear here once ’preprint’ option is removed.]

smaller problems, and then combine the results to yield a solution
to the larger problem. In that sense, the new paradigm described
in this paper, which we call compress-and-conquer (CC), is a sub-
class of divide-and-conquer. However, CC algorithms have several
distinctive features:

• Unlike canonical DC algorithms where the arity of division is
generally a small constant, the arity of division in CC algo-
rithms is generally variable, and linear in the number of cores
of the system.

• Unlike canonical DC algorithms where the division and com-
bine functions are recursive, and go through logarithmic steps
with respective to the problem size, the division and combine
operations in CC are each performed exactly once.

• Unlike canonical DC algorithms where the number and size
of the sub-problems might change at each recursive level, CC
algorithms divide a problem in one step into a fixed number
of sub-problems, and derive a compressed version of the same
problem from the sub-problems with a size independent of that
of the original problem.

• Unlike canonical DC algorithms which often bare little resem-
blance to their conventional sequential counterpart, CC algo-
rithms use and depend on sequential algorithms for the same
problem in their exploitation of parallelism.

CC is perhaps best seen as a higher-order, functional form that
allows a multicore algorithm to be specified in terms of a small
set of constituent functions. This set contains, in many cases, a
conventional sequential algorithm solving the same problem. In
fact we will show that effective exploitation of sequentiality is the
key to the optimality of CC multicore programs.

The paper is organized as follows. We introduce the notion of
CC in Section 2. CC algorithms expressed in Haskell are derived in
Section 3 for problems including scan, nested scan, second-order
linear difference equations, Fibonacci sequence, banded linear sys-
tems, tridiagonal linear systems, and mapReduce. In Section 4 we
show how CC programs can be compiled for execution on mul-
ticore systems; in particular, how logical data dependencies are
mapped to inter-core communications. In Section 5 we give an
analysis and proof for the optimality of CC in terms of operation
count, communication, and scalability. The benchmarks of some
CC programs on multicore systems are also presented. In Section
6, we identify the class of problems subject to the paradigm, and
its relation to the computational complexity hierarchy. In Section 8
we examine the relation between CC and the DC paradigm. Some
variants of CC are given in Section 7. Related work is discussed
in Section 9, which is followed by a final section on concluding
remarks.

short description of paper 1 2009/10/26

2. The Paradigm
We represent a collection over values of type a as an abstract data
type S a, which can be anything like an array, a list, a tree, a set,
etc. Given a function fs :: S a→ S b, we define the compress-and-
conquer (CC) of function f as a higher order function as follows:

DEFINITION 2.1. The algorithm of compress-and-conquer (CC)

cc :: (∀ a . S a→[S a])→ – divide
(∀ a . [S a]→S a)→ – combine
(S b→S c)→ – compress
((S d, S a)→S a)→ – expand
(S c→S a)→ – pre-communication
(S b→S d)→ – post-communication
(S a→S b)→ – sequential function
S a→S b

cc d c co xp comg comh fs s =
let seg = d s

pre = map (co . fs) seg
core = (d . comh . fs . comg . c) pre
post = map (fs . xp) (zip core seg)

in c post

The computation defined by the CC function can be broken
clearly into into three-phases, which we will refer to as compres-
sion, global, and expansion phases respectively.

1. Compression phase map (co . fs) . d : The input is first divided
by d into a number of segments, and function fs is applied in
parallel to each of the segment, with no inter-dependencies. The
results are then compressed by function co at each segment.
Note that in Def. 2.1 we name the divided segments as seg,
which is preserved and later retrieved in the expansion phase.

2. Global phase d . comh . fs . comg . c : The compressed
segments from the compression phase are first combined by
c to become a single collection before passed to the pre-
communication function comg . This is followed by an appli-
cation of the function fs, and then a post-communication of
comh. The result is again divided into segments, ready to be
distributed back.

3. Expansion phase c . map (fs . xp) . zip : The results from the
global phase are first zipped with the original input segments,
and then expanded by function xp. Function fs is applied again
to each segment with no inter-dependencies, and the results are
finally combined into one collection.

A schematic illustration of the CC paradigm is given in Fig. 2.
We will refer the divide, combine, compress, expand, pre- and post-
communication, and the sequential function fs as the constituents
of compress-and-conquer, They are further explained below:

1. Function d :: ∀ a . S a → [S a] divides the given collection into
a number of disjoint segments, and the combine function c :: ∀
a . [S a] → S a is its inverse with the property c . d = id. They
both are given a polymorphic rank-2 type because we want the
division to be independent of the actual values in the collection.
For example, list concatenation is polymorphic, the merge in
merge-sort and the division in quick-sort are non-polymorphic.

2. Function co :: S b → S c compresses the result after fs is
applied to the input segments before passing them to the global
phase. We say that a compress function co is bounded if there
exists a constant k, such that for any s, |s|/|co s| ≤ k, where
|s| is the size of collection s. A compress function that is not
bounded is unbounded. For example, a function that maps any
set to a singleton set is an unbounded compress function, which
compresses a set of any size to one of size one. In contrast, the

d
!" #$x

map fs

!" #$!" #$!" #$!" #$x0 x1 x2 x3

c . map co
!" #$!" #$!" #$!" #$y0 y1 y2 y3

comh . fs . comg

!" #$x′

zip . d
!" #$y′

map(fs.xp)
!" #$!" #$!" #$!" #$(y′

0) (y′
1) (y′

2) (y′
3)x0 x1 x2 x3

c
!" #$!" #$!" #$!" #$x′

0 x′
1 x′

2 x′
3

y
!" #$

Figure 1. A schematic illustration of a compress-and-
conquer algorithm to compute f x = y where f =
cc d c co xp comg comh fs with division arity 4 . The first
level oval box represents the input data x, and the last level one the
output y. The constituent functions to be applied to each level is
labeled on the left-side of each level.

compression of a vector that returns all the entries with even
indices is bounded, and has a compression ratio of two.

3. The expand function xp :: (S d, S a) → S a takes the results of
type S d from the global phase, expand them by modifying the
segments from the original input of type S a, before passing to
the fs function in the final phase.

4. In the global phase, before fs works on the compressed data,
they are pre-processed by function comg :: S c → S a; then
the output from fs are post-processed by function comh ::
S b → S d . They are called the pre- and post-communication
functions because they represent data dependency between the
segments.

Further more we give the following definitions to the properties
of a CC algorithm:

• The arity of a CC function is the arity of its divide and combine
constituents.

• The compression ratio of a CC function is the compression ratio
of its compression constituent.

• A CC function has an unbounded compression ratio if its com-
pression constituent is unbounded.

• A CC function is self-similar if the CC of fs defines the same
function, i.e. cc d c co xp comg comh fs = fs, for some co, xp,
comg , comh, and for any d and c.

As shall be seen in the later sections, functions defined with the
above cc forms can be mapped to multicore systems and often lead
to algorithms with optimal speedups. The CC higher order form
provides a way to specify a multicore algorithm with often very
simple constituent functions.

3. Case Studies
A broad range of problems can be solved by compress-and-
conquer. In this section, we will examine its application to a num-
ber of common problems. Because these problems all deal with
ordered sequences, without loss of generality, we’ll use the list
type as a concrete representation for S a:

type S a = [a]

It is important to note that programs written using the list repre-
sentation are not meant to be efficient implementations, but rather
specifications with sufficient detail to guide real implementations
over multi-cores that will be discussed in Sec 4.

short description of paper 2 2009/10/26

We also define as few commonly used constituent functions as
follows:

d :: Int→ S a→ [S a]
d p l | p == 1 = [l]

| otherwise = let (m, n) = splitAt (length l ‘div‘ p) l
in m : d (p - 1) n

c :: Int→ [S a]→ S a
c p = concat

first, last, last2, bothend :: S a→ S a
first l = take 1 l
first2 l = take 2 l
last l = drop (length l - 1) l
last2 l = drop (length l - 2) l
bothend l = first l ++ last l

sr :: a→ S a→ S a
sr i l = i : take (length l - 1) l

Function d divides the given sequence into p equal-size seg-
ments, and c is its inverse. Functions first,first2,last,last2,bothend
are simple constituent functions that extract the first, frst two, last,
last two, or both first and last elements from a sequence. Function
sr shifts the given sequence one position to the right, and fills in the
first element with its argument.

3.1 Scan
Scan or prefix has been considered a powerful parallel and multi-
core programming constructs. Here is a formal definition:

DEFINITION 3.1. A scan or prefix operation is defined to be a func-
tion that maps an input sequence x0, x1, . . . , xn−1 with respect to
a associative binary operator ⊕ to an output of:

x0, x0 ⊕ x1, . . . , x0 ⊕ x1 ⊕ · · · ⊕ xn−1

In Haskell, a function called scanl1 from the Prelude already
does exactly this computation. So we’ll just define our sequential
scan as:

scan = scanl1

We next show a CC algorithm for scan by providing its simple
constituents.

ALGORITHM 3.1. Scan with respect to an associative binary op-
erator ⊕ by Compress-and-Conquer:

ccScan ⊕ = cc (d p) (c p) last addfirst id (sr 0) (scan ⊕)
where addfirst ([v], (x : xs)) = v ⊕ x : xs

Informally, the cc higher order function takes seven of its con-
stituents, and returns a function that computes the scan with respect
to the binary associative operator ⊕. It does so by first dividing the
input sequence into p segments, and applying the scan over each
segment, all segments in parallel. The last elements of the seg-
mented scan are then used to derive a compressed sequence of the
size p. Scan is then performed over the compressed sequence of
size p. The post communication shifts the global result to right by
one position so that the ith result is distributed back to the (i+1)th
segments, and added to the first element in the original segment
by the expand function addfirst. A scan is then performed again in
parallel to all the segments. All segments are then concatenated to
form the final solution (See Figure 2).

3.2 Nested Scan
A nested scan is to apply scan to a list of sequences. More formally,
we have:

d
!" #$1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

map scans
!" #$!" #$!" #$!" #$1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1!" #$!" #$!" #$!" #$c.map last 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

scans
!" #$4 4 4 4

sr
!" #$4 8 12 16

map(scans.
addfirst)

!" #$!" #$!" #$!" #$(0)1 1 1 1 (4)1 1 1 1 (8)1 1 1 1 (12)1 1 1 1

c
!" #$!" #$!" #$!" #$1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
!" #$

Figure 2. Illustration of scan by compress-and-conquer in the key
steps with an example sequence of 16 1’s, and p = 4.

DEFINITION 3.2. A nested scan with respect to an associate binary
operator ⊕ is defined in terms of scan (see Def. 3.1):

nestedScan ⊕ = map (scan ⊕)

We shall first convert the list of sequences to a flat sequence of
pairs with the following function:

flat :: [S a]→S (a, Bool)
flat l = zip (concat l) [n == length v | v← l, n← [1..length v]]

Intuitively, the second component of the pairs marks if the original
element was the last element in the nested sequence. For example:

flat [[1, 2, 3], [4, 5], [6]] = [(1, ◦), (2, ◦), (3, •), (4, ◦), (5, •), (6, •)]

where • = True, and ◦ = False. We also define the inverse of flat
and a lifting function as follows:

unflat :: S (a,Bool)→ [S a]
unflat l | null l = []

| otherwise = let (m, (v : n)) = break snd l
in map fst (m ++ [v]) : unflat n

lift :: (a→ a→ a)→ ((a, Bool)→ (a, Bool)→ (a, Bool))
lift f (x, u) (y, v) = (if u then y else f x y, v)

It can be easily verified that if ⊕ is associative over type a, then
lift ⊕ is associative over type (a, Bool).

ALGORITHM 3.2. Nested scan with respect to an associative bi-
nary operator ⊕ can be reduced to a flat scan over pairs by

ccNestedScan ⊕ = unflat . ccScan (lift ⊕) . flat

3.3 Second Order Linear Difference Equations
In this section, we consider the system of second order linear
difference equations of the following form:

DEFINITION 3.3. System of Second Order Linear Difference Equa-
tions:

y0 = c0

y1 = c1

y2 = a2y0 + b2y1 + c2

...
yn−1 = an−1yn−3 + bn−1yn−2 + cn−1

(1)

Now let us consider a section of (1) corresponding to the vari-
ables indexed from p to q, p < q < n, denoted by L[p, q]:

short description of paper 3 2009/10/26

yp = ap yp−2 + bp yp−1 + cp

yp+1 = ap+1yp−1 + bp+1yp + cp+1

yp+2 = ap+2yp + bp+2yp+1 + cp+2

...
yq = aq yq−2 + bq yq−1 + cq

(2)

In a system of difference equations, we say a variable yi de-
pends on another variable yj if yj appears as a term on the right
hand side of its equation; and two variables are aligned if they de-
pend on the same variables. We next will align all the variables
from yp to yq , so that they all depends on the external variables
yp−2 and yp−1. This can be achieved with the following sequential
algorithm:

ALGORITHM 3.3. (diff) A Sequential Internal Solver for a Sec-
tion of Second Order Difference Equation Given a section L[p, q],
where only the first two variables may have external references, and
all the other variable refer to variables internal to the section. Let
X = (yp−2, yp−1, 1), we define a new sequence of vectors ui such
that yi = ui ∗ X , where ∗ stands for a point-wise multiplication
for vectors.

yp = up ∗X
= ap yp−2 + bp yp−1 + cp

= (ap, bp, cp) ∗X
yp+1 = up+1 ∗X

= ap+1yp−1 + bp+1yp + cp+1

= (apbp+1, ap+1 + bpbp+1, cp+1 + cpbp+1) ∗X
...
yq = uq ∗X

=

0

@

2

4
uq−2

uq−1

0 0 1

3

5 (aq, bq, cq)

1

A ∗X

In Haskell, we write the internal solver as a function mapping
from the sequence of (ai, bi, ci) to the sequence of ui as follows:

diff ((a0, b0, c0) : (a1, b1, c1) : xs) = u
where u0 = (a0, b0, c0)

u1 = (a0 ∗ b1, a1 + b0 ∗ b1, c1 + c0 ∗ b1)
u = u0 : u1 : zipWith3 f u (tail u) xs
f x y z = (x, y, (0, 0, 1)) ! z

where ! is defined to be the operation of multiplying a 3x3 matrix
with a vector of size 3.

The above gives a definition of vector sequence ui, for p ≤ i ≤
q, and we have successfully aligned all variables from yp to yq to
the external variables represented by X = (yp−2, yp−1, 1).

Note that diff can also be used to solve a complete system of 2nd
order linear difference equations where a0 = b0 = a1 = b1 = 0.
It doesn’t matter how we initialize the two variables in X , diff
will always return a sequence of ui = (0, 0, yi). In this sense,
Algo. 3.3 is an algorithm for a generalized form of second order
linear difference equations.

Now consider a system L of n second order difference equations
partitioned into p sections. By applying Algo. 3.3 to each of the
section, we can make all the internal variables of each section align
to the last two variables of the previous section. Let L′ be a system
of equations formed by taking the last two equations from each of
the section, then it is not hard to see, with a little adjustment, what
we get is in turn a closed second order difference equations, with a
smaller size of 2p. We call L′ a compressed version of L.

The adjustment needed here is to make the last variable from
each section, except the first section, instead of aligning with the
last two variables from the previous section, align with the last from

the previous, and second last from its own section. This is achieved
with the following function:

adjustdiff (x : x’ : xs) = x : x’ : aux xs
where aux [] = []

aux ((a, b, c) : (a’, b’, c’) : xs) =
(a, b, c) : (a”, b”, c”) : aux xs
where a” = b’ - b” ∗ b

b” = if a == 0 then 0 else a’ / a
c” = c’ - b” ∗ c

Furthermore, solving L′ means we have solved the last two
variables of each section, therefore the first two variables of the next
section can in turn be solved. We’ll design an expansion function to
properly re-initialize the first two variables in each section, so that
they becomes individually solvable by Algo. 3.3.

initfirst2 ([(, , x), (, , x’)], (u0 : u1 : xs)) =
(0, 0, y0) : (0, 0, y1) : xs
where y0 = (x, x’, 1) ∗ u0

y1 = (x’, y0, 1) ∗ u1

This lead to the following compress-and-conquer algorithm:

ALGORITHM 3.4. (ccDiff) Compress-and-Conquer for Second Or-
der Linear Difference Equations

ccDiff = cc (d p) (c p) last2 initfirst2 adjustdiff (sr2 (0, 0, 0)) diff
where sr2 v = sr v . sr v

3.4 Fibonacci Sequence
DEFINITION 3.4. Fibonacci sequence is the following sequence:

f0 = 1
f1 = 1
...
fn = f(n−1) + f(n−2)

It is no more than a special case of the second order linear system,
which is homogeneous with ci = 0 for 0 ≤ i ≤ n, and has constant
dependent coefficients of one for all non-initial variables.

Algo. 3.4 therefore is also a compress-and-conquer algorithm
for Fibonacci sequence. It is obvious that since we know that in the
case of Fibonacci Sequence, all the ci in (1) equal to 0, and all the
ai and bi equal to 1, some simplifications can be made.

ALGORITHM 3.5. (ccFib) Since Fibonacci Sequence is no more
than a special case of second order linear difference equations,
Algo. 3.4 applies.

3.5 Banded Lower Triangular Linear Systems
DEFINITION 3.5. A banded lower triangular linear system with
bandwidth of two is:

2

666664

ȧ0

ȧ1 ḃ1

ȧ2 ḃ2 ċ2

ȧ3 ḃ3 ċ3

. . .
. . .

. . .

3

777775

2

66664

y0

y1

y2

y3

...

3

77775
=

2

66664

d0

d1

d2

d3

...

3

77775

By multiplying out the matrix and the vector of unknowns, and
some simple algebraic transformation, the above banded linear
system becomes a second order difference equation in the form of
(1), where

short description of paper 4 2009/10/26

y0 = d0/ȧ
y1 = (d1 − d0)/ḃ1

y2 = −(ḃ2/ċ2)y1 − (ȧ2/ċ2)y0 + d2

...

(3)

In other words, a banded linear system is equivalent to a differ-
ence equation where the bandwidth equal of the banded system is
equal to the order of the difference equations. Algo. 3.4 therefore is
also a compress-and-conquer algorithm for banded linear systems
of bandwidth two.

ALGORITHM 3.6. Banded Triangular Linear Systems with Band-
width of Two

Convert the system to a second order difference equations by
(3), and then apply Algo. 3.4.

In fact, Algo. 3.4 can be easily generalize to linear difference
equations of kth order, for arbitrary k, and therefore Algo. 3.6
can also be generalized to solved triangular linear systems with
arbitrary bandwidth of k. We choose however to omit the details
of the generalization from this paper.

3.6 Tridiagonal Linear Systems
In all the previous case studies, the inter-dependencies between
variables are one directional in that if we lay the variables from left
to right by their indices, then the dependencies are all from right to
left. Tridiagonal linear systems are examples of applications where
the dependencies are bi-directional.

The following is a general form for tridiagonal linear system L
with n unknowns:

DEFINITION 3.6. Tridiagonal Linear Systems
2

6666664

b0 c0

a1 b1 c0

a2 b2 c2

a3 b3 c3

. . .
. . .

. . .
an−1 bn−1

3

7777775

2

6666664

y0

y1

y2

y3

...
yn−1

3

7777775
=

2

6666664

d0

d1

d2

d3

...
dn−1

3

7777775

Note that for a given variable yi the coefficients ai and ci

represent its dependency on yi−1, and yi+1 respectively in the
above standard form. The coefficient ai and ci are referred to as
the forward and backward dependency coefficients, respectively.

Now let us consider a section L[p, q] of the tridiagonal system
consists of the rows corresponds to variables yp to yq , where 0 ≤
p < q ≤ n.

2

664

ap bp cp

ap+1 bp+1 cp+1

. . .
. . .

. . .
aq bq cq

3

775

2

664

yp

yp+1

...
yq

3

775 =

2

664

dp

dp+1

...
dq

3

775

A variable yi is said to be forward (backward) aligned with yj

if they are forward (backward) dependent on the same variables.
They are said to be aligned if they are both forward and backward
aligned. Hence, no two variables are aligned in the above diagram.

Variable can be aligned by Gaussian elimination. For example,
The variable yp+1 can be forward aligned with yp by multiply the
row for yp by −ap+1/bp, and then add it to the row for yp+1. We
repeat this process for every row except the row for yp in L[p, q],
which leads to the following diagram:

2

6664

a′p b′p c′p
a′p+1 b′p+1 c′p+1

...
. . .

. . .
a′q b′q c′q

3

7775

2

664

yp

yp+1

...
yq

3

775 =

2

6664

d′p
d′p+1

...
d′q

3

7775

Now variables yp+1 to yq are forward aligned with yp, which
means that the coefficients of a′p, a′p+1, . . . , a

′
p are in the same

column in the matrix. We can write the forward alignment as a
function that takes a sequence of (ai, bi, ci, di) and returns the
modified co-efficients (a′i, b

′
i, c

′
i, d

′
i) as follows:

forward [] = []
forward (x : xs) = u

where u = norm x : zipWith f xs u
f (a, b, c, d) (a’, b’, c’, d’) =

norm (-a’ ∗ a, b - c’ ∗ a, c, d - d’ ∗ a)
norm (a, b, c, d) = (a / b, 1, c / b, d / b)

Note that in the process we also normalize every row so that the
co-efficients on the diagonal of the matrix, i.e., all the bi, become
1.

With the forward alignment in place, we can use a similar
process to backward align variable yq−1 with yq , and so on, which
leads to the following diagram:

2

66664

a′′p b′′p c′′p
a′′p+1 b′′p+1 c′′p+1

...
. . .

...
a′′q−1 b′′q−1 c′′q−1

a′′q b′′q c′′q

3

77775

2

66664

yp

yp+1

...
yq−1

yq

3

77775
=

2

66664

d′′p
d′′p+1

...
d′′q−1

d′′q

3

77775

Note that all variables yp to yq are now both forward and
backward aligned. We can write the backward alignment function
in a similar manner as follows:

backward [] = []
backward u = reverse v

where (x : xs) = reverse u
v = x : zipWith f xs v
f (a, b, c, d) (a’, b’, c’, d’) =

(a - a’ ∗ c, b, - c’ ∗ c, d - d’ ∗ c)

We consider a tridiagonal system is solved if only diagonal
coefficients are left in the matrix. Obviously, if ap = cq = 0, the
system L[p, q] is completely solved after forward and backward
alignments. When ap or cq are not zeros, however, we shall only
align the inner block L[p + 1, q + 1], and adjust the boundary rows
for yp and yq to align inward like this:

adjust l = let [(a0, b0, c0, d0), (a1, b1, c1, d1)] = first2 l
[(a2, b2, c2, d2), (a3, b3, c3, d3)] = last2 l

in [(a0, b0 − a1 ∗ c0,−c1 ∗ c0, d0 − d1 ∗ c0)] ++
middle l ++
[(−a2 ∗ a3, b3 − c2 ∗ a3, c3, d3 − d2 ∗ a3)]

As as result from this adjustment, we effectively obtain a dia-
gram of the following shape for L[p, q] when ap)= 0 or cq)= 0:

2

66664

a′′p b′′p c′′p
a′′p+1 b′′p+1 c′′p+1

...
. . .

...
a′′q−1 b′′q−1 c′′q−1

a′′q b′′q c′′q

3

77775

2

66664

yp

yp+1

...
yq−1

yq

3

77775
=

2

66664

d′′p
d′′p+1

...
d′′q−1

d′′q

3

77775

short description of paper 5 2009/10/26

ALGORITHM 3.7. (trid) A Sequential Internal Solver for a section
of tridiagonal linear systems is a composition of the forward and
backward alignment, and the adjustment function:

trid [] = []
trid l = case (a, c) of

(0, 0)→ backward (forward l)
→ adjust ([x] ++ backward (forward (middle l)) ++ [y])

where [x@(a, , ,),y@(, ,c,)] = bothend l

Now if we divide a tridiagonal system into p sections, and apply
Algo. 3.7 to each section, they are then all internally solved. In
Figure 3, we show the non-zero coefficients in the matrix after
internally solving all sections for an example case where n = 16
and p = 4.

% %% % %% % %% % %% % %% % %% % %% % % !% % %% % %% % %% % %% % %% % %% % %% %

% % % % % % % % % % % % % % % %

%%% %%% %% %%% %%% %% %%% %%% %% %%% %%%
Figure 3. A tridiagonal linear system of size n (=16) divided into
p (=4) sections, each section internally solved.

By focusing on the first and last variables in all sections after
the internal solver trid is applied, one realizes that they in turn
form a compressed tridiagonal system of size 2p. This compressed
system can in turn be solved by trid. The solution of the compressed
tridiagonal system can be plugged back to each section, and each
section can then be completely solved independently. This leads
to the following compress-and-conquer algorithm for tridiagonal
linear systems:

ALGORITHM 3.8. (ccTrid) Compress-and-Conquer Algorithm for
Tridiagonal Linear Systems

ccTrid = cc (d p) (c p) bothend replace id id trid
where replace ([x, y], l) = [x] ++ middle l ++ [y]

3.7 MapReduce
DEFINITION 3.7. MapReduce is the functional composition of the
map and reduce:

mapReduce f ⊕ = reduce ⊕ . map f

where reduce with respect to an associative binary operator ⊕ is
a function that maps a non-empty sequence x0, x1, . . . , xn−1 to a
single value of x0 ⊕ x1 ⊕ · · · ⊕ xn−1.

J. Dean and S. Ghemawat introduced mapReduce in [9] as a
separate programming construct, gave distributed implementations,
and showed it applies to many search engine problems.

The problem of mapReduce can be said to be an inherently
simpler problem than any of the problems we have considered
so far and can be computed by a compress-and-conquer where
the post-phase is not needed. We therefore introduce a new and
simpler version of compress-and-conquer, which we call pre-CC,
for it contains only the pre-phase of the more general CC form as
in Def. 2.1:

ccpre d c co f = co . c . map (co . f) . d

We then have the following simple algorithm for the parallel
version of mapReduce:

ALGORITHM 3.9. MapReduce with respect to an associative bi-
nary operator ⊕ and a function f is defined in terms of pre-CC:

ccMapReduce f ⊕ = ccpre (d p) (c p) (reduce ⊕) (map f)

4. Implementation
4.1 Operational Mapping
Implementation of compress-and-conquer algorithms on multicore
systems is fairly straightforward. The work done in compression
and expansion phases can be easily mapped on to p threads or pro-
cessors in parallel. We can certain use a more compact represen-
tation than lists, but more fundamentally, the specification of CC
as given in Def. 2.1 is often inefficient on today’s dominant CPU
architectures due to the immutability implied by referential trans-
parency, which prevents destructive updates. Also, the divide and
combine functions shall firstly just share the original input data in-
stead of making new copies of them. Secondly, the order and the
arity of the divide function shall be consistent with combine, and
they shall match up against each other.

For the above reasons, we move over to a monadic form of
compress-and-conquer defined below:

DEFINITION 4.1. The algorithm of monadic compress-and-conquer
(ccm):

ccm :: Monad m⇒
(∀a. ([S a] → m())

→ S a → m(S a)) → – divide then combine
(∀a. (S a → m())

→ [S a] → m[S a]) → – combine then divide
(S a → m(S b)) → – compress
((S c,S a) → m(S a)) → – expand
(S b → m(S a)) → – pre-core
(S a → m(S c)) → – post-core
(S a → m(S a)) → – sequential
S a → m(S a)

ccm dc cd co xp g h fs = dc aux
where aux seg = do

pre ← parmap (co · fs · dup) seg
core← cd (h · fs · g) pre
parmap (fs · xp) (zip core seg)

(f · g) x = g x >>= f

We must note that:

1. Because we want to do destructive updates, the sequential func-
tion fs must now return the same collection type as its input.
This affects the overall types of the cc and its constituent func-
tions.

2. We pair up the divide and combine functions as either a single
divide-then-combine operation or combine-then-divide. Both
are now higher order functions that take a function as argument,
which can update the original data in place, but can not change
the structure of them.

3. Because the original CC algorithm requires the input collection
to remain unchanged until the expansion phase, we must use
dup :: S a → m(S a) to create a local copy of the segment
during the compression phase.

4. The original map function is changed to a monadic parmap
:: (a → m b) → [a] → m[b] that spawns off a system thread
for each segment, and only returns when all threads are done.

short description of paper 6 2009/10/26

5. We purposely phrase the function using monadic composition
(·) in order to retain the similarity to the original specification
in Def. 2.1.

In our actual implementation, we choose to define the concrete
collection type as an unboxed mutable array as follows in order to
minimize computation overhead:

data S a = Arr (IOUArray Int a) – shared array
Int – lower bound
Int – upper bound

This definition leads to straightforward implementation of both
cd and dc by sharing the original array without creating duplicate
copies. All the constituent functions used in the specification of our
algorithms must also be modified to operate on arrays, with direct
indices and destructive updates. We omit such details here.

We use Haskell’s threads to implement parmap, which means
the monad m in Def. 4.1 is indeed the IO monad. We choose
the division parameter p to match the number of cores in the
hardware so that the original array is split into p segments, and as a
consequence, parmap will spawn exactly p system threads. We rely
on the operating system to balance system threads among multiple
cores.

4.2 Inter-Core Communications
With the mapping of CC algorithms to multicore systems given in
Section 4.1, and if we assume the divided segments reside locally
to each processor, we can see that there are two, and only two, con-
stituent functions in a CC algorithm that involve inter-core com-
munications: the results from co at the end the compression phase
are moved over to the global phase, and after the global phase, the
results are moved back to each processor as input to the expand
function. All the rest constituent functions are mapped to local op-
erations. Note that the constituent functions comg and comh are
referred to as communication functions, not because they are to
be mapped into inter-core communications at the implementation
level, but rather they realize the dependency relations between dif-
ferent sections in the logic domain.

Let S = (P0, . . . , Pp−1) be a multicore system with p cores
used by a CC algorithm, and, without loss of generality, P0 be the
appointed core for the global computation, then by the mapping of
parmap from Section 4.1, one can see that

• At the end of the compression phase, each Pi sends one piece
of data to P0. 1.

• At the beginning of the expansion phase, each Pi receives a
piece of data from P0.

If we go beyond a Haskell implementation, in the Message Pass-
ing Interface (MPI) [6], there are two supported communication
patterns, gather and scatter, that perform precisely the above two
operations respectively. It is therefore straightforward to support
the communication in CC algorithms with MPI. Other options, in-
cluding MP, PThreads, Intel’s Thread Building Blocks [8], and Mi-
crosoft’s Parallel Task Library [11], can all be used instead.

5. Performance Analysis
Since parallel programs generally incur some overhead over the
best known sequential counterparts for the same problems, it is a
good practice to understand and quantify the overhead asymptoti-
cally. In this section, we show that the overhead of CC algorithms

1 Of which, the sending from P0 to P0 is not between two different cores.
However, it can still be considered as a special case of inter-core commu-
nication, and can be implemented by inter-core communication packages
such as MPI in spite of its speciality.

in both operational and communicational aspects are minimum,
which also translates to linear speedups on multicore systems.

5.1 Operational Optimality
Given a program P , its operational complexity, written ψ(P), is
the total number of operations that P performs, as a function of the
problem size. We say two programs P1 and P2 are consistent with
each other, written P1 ∼ P2, in operational complexity if and only
if ψ(P1) = Θ(ψ(P2))

2.

THEOREM 5.1. Let f be a CC program with base function fs (see
Def. 2.1), then f ∼ fs. In other words, a CC program is consistent
with its base function.
Proof: besides the sequential base function, all other constituents
in the CC program takes time independent of problem size.

Given a problem f , its operational complexity, written φ(f),
is the minimum number of operations f inherently requires, as
a function of the problem size. We say a program F that solves
problem f is operationally optimal for f , written F ∝o f if and
only if ψ(F) = O(φ(f)).

It follows from the above definition and Theorem 5.1 that

THEOREM 5.2. Given a problem f , F a CC program that solves
f , and fs the sequential base function for F, then F ∝o f if and
only if fs ∝o f .

The above theorem gives a convenient way to check on the
operational optimality of CC programs. From which one can easily
verify that

THEOREM 5.3. The CC algorithms Algo 3.1 for scan, Algo. 3.2 for
nested scan, Algo. 3.4 for second order difference equations, Algo.
3.5 for Fibonacci sequence, Algo. 3.6 for banded linear systems,
Algo, 3.8 for tridiagonal linear systems are operationally optimal.

5.2 Communicational Optimality
Given a multicore program P , its communicational complexity,
written δ(P), is the total number of inter-core communications
that P performs, as a function of the number of cores p. We say
two programs P1 and P2 are consistent in communication, written
P1 ≈ P2, in communication complexity if and only if δ(P1) =
Θ(δ(P2)).

Given a problem f over input X partitioned into p disjoint and
non-empty subsets of X, we say its communication complexity,
written γ(f), is the minimum number of references crossing the
partitions that f inherently requires, as a function of the number
of partitions m. We say a multicore program F solving problem
f is communication optimal for f , written F ∝c f if and only if
δ(F) = O(γ(f)).

THEOREM 5.4. The CC algorithms Algo 3.1 for scan, Algo. 3.2 for
nested scan, Algo. 3.4 for second order difference equations, Algo.
3.5 for Fibonacci sequence, Algo. 3.6 for banded linear systems,
Algo, 3.8 for tridiagonal linear systems are all communication
optimal.
Proof: Let f be any of the above problems, X the input for f . When
X is partitioned into any p disjoint and non-empty blocks. Since
the final solution of f over X depends on at least one piece of
data in each of the m blocks, the communication complexity of f ,
γ(f(p)) = Ω(p) 3. But the CC algorithm for f has communication
complexity δf(p) = O(p). Therefore, the CC algorithm for f is
communication optimal.

2 f = Θ(g) if and only if f = O(g) and g = O(f)
3 given f and g, f is said to be at least of the order of g, written f = Ω(g),
if g = O(f)

short description of paper 7 2009/10/26

5.3 Linear Speedups
Let f be a program, T (f, n, p) the time to carry out f on input size
n and p cores. Then speedup of the f is then

S(n) = T (f, n, 1)/T (f, n, p) (4)

It then follows that

THEOREM 5.5. Let p be the number of cores, n size of the input. If
p = o(n) 4 , then, the CC algorithms Algo 3.1 for scan, Algo. 3.2
for nested scan, Algo. 3.4 for second order difference equations,
Algo. 3.5 for Fibonacci sequence, Algo. 3.6 for banded linear
systems, Algo, 3.8 for tridiagonal linear systems have asymptotical
speed up linear to the number of cores p.
Proof: In all the above algorithms, the compression and expansion
phases take O(n/p) time, and the global phase takes O(p) time.
The total time is then T (f, n, p) = O(n/p) + O(p). Since p =
o(n), T (f, n, p) = O(n/p). By (4):

S(n) = T (f, n, 1)/T (f, n, p)/T (f, n, 1)
= O(n)/O(n/p)
= O(p)

(5)

Also to be observed is

THEOREM 5.6. The computational time of the global phase in a
CC algorithm is a function of the number of cores p, and indepen-
dent of the size n of the problem.
Proof: obvious.

The above implies that if the sequential base constituents of a
CC algorithm is an optimal one sequentially, then the CC algorithm
is also an optimal multicore program in the sense that (1) it is a
consistent algorithm; (2) it has linear speedup.

In Figure 4, we plotted the speed up curve of some CC programs
in Haskell running on a multicore system with seven cores available
to us. Observe that the speedups for the three different problems
are all nearly perfectly linear to the number of cores used for the
computation.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7
p

Speedup vs number of cores p of cc algorithms

ccScan

♦
♦

♦
♦

♦
♦

♦
♦

ccDiff

+

+

+

+

+

+

+

+
ccTrid

"
"

"
"

"
"

"

"

Figure 4. The actual speedup curve of CC programs in Haskell for
scan, second order difference equation, and tridiagonal problem for
n = 106 gathered on multicore system with seven cores.

Theorem 5.5 may appear to be a direct violation to the Amdahl’s
Law [1] or Gustafson’s Law [16]. There is a simple explanation to
it. Both of the two laws assume some fixed percentage of either

4 f(x) = o(g(x)) if limx→inf f(x)/g(x) = 0

parallel or sequential portion of a program. Since this is not a valid
assumption to be made for the problems we consider in this paper,
neither Amdahl’s nor Gustafson’s Law is relevant here.

6. Characteristics
In the above section, it is shown that, for a broad range of problems,
CC paradigm can delivers multicore solutions optimal in computa-
tion and communication with linear speed ups. It is however un-
clear, what are the common characteristics of the problems that are
subject to the CC programming paradigm with ideal performance.

To answer the above question, let us first introduce the notion
of the CC class.

DEFINITION 6.1. A problem is in the class of CC if and only
it is subject to the CC form of (Def. 2.1) with an unbounded
compression ratio (Section 2).

It follows that

THEOREM 6.1. Scan, nested scan, second order linear difference
equations, Fibonacci sequence, banded linear triangular system of
bandwidth two, tridiagonal linear systems are in the class of CC.

To characterize problems in CC, we need the following notions:

DEFINITION 6.2. Let F be a function over input X . The reference
graph of F is the pair G = (V, R), where V = {x | x ∈ X}, and
R is the binary relation, where x1 R x2 if and only if x1 refers to
x2 in F .

For instance, the reference graph for the problem of second
order difference equations is a chain of vertices, each of which, with
the exception of the first two, has two directed edges connecting
it to the two previous ones respectively. Since this binary relation
generally is not symmetric, the graph is directed.

Given a graph G = (V, R), a cut is a binary partition of the
vertices, and thesize of a cut is the number of edges between the
two partitions. A cut is maximum if its size is larger than any other
cut.

Now we are in the position to identify a necessary condition for
problems to be in the class of CC:

THEOREM 6.2. Let f be a problem in CC, then there exist a ref-
erence graph G = (V, R) for f with maximum cut independent of
|V |, where |V | denotes the cardinality of V .
Proof: suppose this is not the case, we then can then use the
reference graph as defined by the CC algorithm for that of the
f . This graph however has maximum cut bounded by constant,
leading to a contradiction.

The problem of second order difference equation for instance
has a reference graph that meets the above condition.

It should come as no surprise that all problems are not known
to possess reference graphs with constant bounded maximum cut
as required by Theorem 6.2. FFT and Bitonic Sort are examples of
such problems.

Next, we are to show that the class of CC is characterized
not only by the property of the reference graphs, but also by the
complexity classes:

THEOREM 6.3. Let L be the class of problems with computational
complexity of O(n) 5 , where n is the size of the problem. Then
CC ⊂ L.
Proof: suppose there is a problem f ∈ CC, and f /∈ L.

5 Here, the O(n) refers to the linear complexity of a problem on a Turing
machine.

short description of paper 8 2009/10/26

Let T (f, n, 1) = O(g(n)), where g is not linear to n, fs the
base function of f . The time to compute fs on each core will be
g(n/p). If we simulate the CC program for p cores on one core,
the total time will be O(mg(n/m)). Since g is more than linear
with n, it follows that O(mg(n/m)) < O(g(n)), which lead to a
contradiction.

Theorem 6.2 and 6.3 point out rather severe limitations on
the power of the compress-and-conquer paradigm. However, this
does not invalidate the claim that the CC class contains a broad
range of problems. Moreover, there are problems which, though in
themselves are not in the class of CC, but contain component(s)
which are. Matrix multiplication, for instance, is clearly not in the
class of L, however, its main component, the inner product of a row
and a column from the two factor matrices, is in the class of CC and
can indeed be computed with a CC program.

7. Variations and Generalizations
7.1 Parallelized Core-Phase
Observe that in the CC form of Def. 2.1 we have chosen to apply
the sequential base function over the compressed problem during
the global phase, and as a result, the global phase computation is
mapped into the internal computation inside a single appointed core
(P0, see Section 4).

One may wonder if we could gain in performance if we choose,
instead, a parallel program over multiple cores for the global phase.
The answer should be obvious. Unless the number of cores is sub-
stantially large, the alternative parallel approach brings no bene-
fit to performance, but only complicates the programming require-
ment. For if one goes that way, he must provide a separate parallel
version of the base function in addition to the sequential version
which is shared in all the three phases under the proposed scheme.

7.2 Specialized Sequential Function
An interesting aspect of CC is that the sequential function fs is
applied three times, one in each of the three phases:

1. In compression phase, fs only partially solves each segment of
the original input data;

2. The compressed results form a much smaller problem in the
global phase, which is completely solved by fs;

3. The solution to the compressed problem is expanded to modify
each segment of the original data, which then are completely
solved by fs.

For this reason, we’ll call fs the generalized solver for a given
problem. But in order to re-use the same fs, we have to retain
the original data until the last phase. A consequence made more
apparent by the monadic ccm is that in the compression phase
it has to make copies of the input segments otherwise fs would
modify them in place. This is of course an implementation issue
that can be addressed, for instance, by some fusion technique. A
more fundamental question is: can we re-use the result of fs from
the compression phase without having to keep the original data
around?

The answer is yes. Instead of relying on just one fs for all
phases, we can take another sequential function gs that we call a
specialized solver, and formulate a different CC algorithm below:

cc’ d c co xp comg comh fs gs = post . first core . pre
where pre = unzip . map ((co × id) . fs) . d

core = d . comh . fs . comg . c
post = c . map (gs . xp) . (uncurry zip)
first f (x, y) = (f x, y)
f × g x = (f x, g x)

Just like the original algorithm, cc’ still contains three phases,
but in the compression phase, it actually passes the results from
function fs directly to the expansion phase, and function gs would
pick up from where fs has left and work out a complete solution
with the expanded information obtained from the global phase.

In terms of complexity, cc′ is on the same order as cc. But in an
actual implementation, it may perform better because the special-
ized solver gs may require less computation steps than the general-
ized solver since it has a partial solution to start with. Theoretically,
however, we still prefer the original CC formulation in Def. 2.1
which is easier to reason about due for its simplicity.

7.3 Higher Order CC
A compress-and-conquer with a sequential base function is said to
be of first order. Inductively, a compress-and-conquer is said to be
of a (k + 1)-th order CC algorithm if its base function fs is a k-th
order compress-and-conquer.

Let us consider a second order compress-and-conquer, with
arity n at top level, m the bottom level. It can be mapped to a
multicore system with n interconnected nodes, each with m cores.
It is easy to show that

THEOREM 7.1.
(1) A second (k + 1)-th order CC is operation and communica-

tion optimal if and only if its (k-th order) base function is.
(2) The speedup of a second order compress-and-conquer with

arities n and m at top and base levels respectively mapped to n
nodes with m cores is respectively linear to n and m.

Observe that second order CC form provides a simple and
elegant framework to program hierarchical systems with multiple
nodes of multicore units with guaranteed optimal performance.

It should also be obvious the above theorem can be generalized
to CC algorithms with order greater than two.

8. Relation to Divide-and-Conqer
Compress-and-conquer solves a problem by dividing the problem
into sections, and deriving the solution by combining the results
from each of the sections. In this sense, it is a form a divide-and-
conquer (DC). However, there are some fundamental differences
between the two paradigms, which we already pointed out in the
introduction. Particularly, we note that

• the arity of division in DC is often derived from logic domain,
whereas in CC corresponds to the system configuration.

• the division in DC is recursive, whereas in CC is not.

An interesting question one may pose is if it is possible to
convert the program under one paradigm into one in another. Our
previous work on divide-and-conquer introduced the notion of pre-
and post- morphism as algebraic models for DC, and it was pointed
out that a broad range of scientific problems can be solved with
three types of communications, namely, last-k, correspondent, and
mirror-image [12, 13]. It can be shown that a postmorphism [12,
13] algorithm with last-k communication can be automatically
transformed into a CC program, and vice versa. Limited by space,
a proof to this claim will have to be omitted from this paper.

The transformation between postmorphism and CC programs is
an example of algebraic program transformations, considered by
Backus crucial to non von Neumann style programming [2]. More
results on this subject will be discussed in [17].

9. Related Work
Much effort has been made to support high level programming for
multicore computing. Some noticeable examples are the Thread-
ing Building Blocks from Intel [14], Parallel Task Library from

short description of paper 9 2009/10/26

Microsoft, and the Data Parallel Haskell project [5] from the func-
tional programming community.

The CC paradigm proposed here differs from any of the above
approaches in a number of fundamental ways. Firstly, it does not
expose any of the mechanisms related to multicore architecture
such as thread, mutex, and task queues. Secondly, its does not
expose any imperative constructs such parallel-for or parallel loops.
Finally, it does does not include programming constructs such as
reduce, scan (including segmented scan), and inner-product as part
of the library.

Instead, the paradigm is organized around the higher order func-
tional form CC to support multicore programming. A CC algorithm
is derived once its constituent functions are identified. One charac-
teristic of the approach is the very high degree of modularity, which
means that a small set of simple constituents are shared by many
applications. Constructs such as reduction, scan, and inner product
are constructed with CC form, but are treated the same as any other
applications.

Solving a problem through compression is not an entirely new
idea. There is a known technique in parallel computing, referred to
as odd-even reduction. Ladner and Fischer [10] used this technique
in an elegant parallel scan algorithm. It should be observed that the
compression ratio (Sec. 2) used in odd-even reduction is exactly
two while that used in CC paradigm is linear to the size of the
problem and not bounded by any constant.

With odd-even reduction, a problem is recursively reduced in
size by a factor of two. As a result, the number of steps required
is logarithmic to the size of the problem during both the reduction
and expansion phase. In contrast, the CC paradigm has unbounded
compression ratio, and takes one step during both the compres-
sion and expansion. Another obvious difference is that an algorithm
based on odd-even reduction is totally a different algorithm from its
sequential counterpart, while a CC algorithm employs the sequen-
tial counterpart as the core of its computation.

Nested data parallelism has been shown to be an expressive and
effective approach to multicore programming [7, 15], which can be
traced back to the earlier work on the language NESL and nested
scan [3, 4]. From data structure point of view, both Data Paral-
lel Haskell and compress-and-conquer introduced new kinds of ar-
rays operations. The two approaches however have salient differ-
ences in nature. First of all, the division of arrays in the former
are non-polymorphic in that the result depends on the values of
the array entries through the use of array comprehension (e.g. the
division used in quick-sort), while in the latter, polymorphic struc-
tural operations are of fundamentally importance to the paradigm
(non-polymorphic operations can be implemented with polymor-
phic operations). Secondly, in spite of a large number of primitives
built into the parallel arrays of the former, data communication is
completely hidden, and programmers have to trust the compiler in
doing a good job at balancing tasks. In contrast, communication in
the latter is first-class citizen. Thirdly, monadic composition (in its
comprehension form) is the main theme in the former. In contrast,
higher order functional forms are the center pieces of the later.

10. Conclusion
The proposed compress-and-conquer paradigm in general leads to
linear speedup for multicore programs. The reason for this perfor-
mance not only lies in the parallelization of computation tasks, but
also depends on the successful exploration of sequentiality of the
algorithms during the compression and expansion phases, when the
pre- and post-computations are computed on all cores mutually in-
dependently.

The advantage of compress-and-conquer is not only the high
performance but also the programming simplicity. The best known
sequential algorithms for the problem usually will serve perfectly

as the major constituent function for the compression. As pointed
out in Section 8, CC algorithms are associated with a class of well-
identified divide-and-conquer (DC) algorithms. CC algorithms can
be derived by program transformation from DC algorithms with
the same performance as their hand-written counterpart CC algo-
rithms. The linear speedups of CC algorithms can be shown with
rigorous analysis, and are confirmed with the benchmarks gathered
on multicore systems which were presented in Section 5.

The power of compress-and-conquer is not one without limi-
tation. We pointed out some characteristics of problems subject to
the CC paradigm, and some examples that fall out the class of com-
pressible problems in Section 6. However, it does apply to a fairly
broad range of problems in scientific computing, which include
but not limited to mapReduce, scan, segmented scan, fibonacci se-
quence, k-th order linear difference equations, tridiagonal linear
systems, and band linear systems with bandwidth k.

References
[1] G. Amdahl. Validity of single-processor approach to achieving large-

scale computing capbility. Proceedings of AFIPS Conference, pages
483–485, 1967.

[2] J. Backus. Can programming be liberated from von Neumann style?
Commuinication of the ACM, 21(8):613–641, August 1978.

[3] G. Blelloch. Scan as primitive parallel operations. In International
Conference on Parallel Processing, 1987.

[4] G. Blelloch. Programming parallel aglorithms. Commuinication of the
ACM, 39(3), March 1996.

[5] M. M. Chakravarty, R. Leshchinsky, S. P. Jones, G. Keller, and S. Mar-
low. Data parallel haskell. In DAMP’07, November 2007.

[6] W. GROPP and ET.AL. Mpich2 user’s guid. MATHEMATICS AND
COMPUTER SCIENCE DIVISION, ARGONNE NATIONAL LAB,
NOVEMBER 2004.

[7] T. Harris and S. Singh. Feedback directed implicit parallelism. In
International Conference on Functional Programming, Oct 2007.

[8] Intel. Intel 64 and ia-32 architectures software developer’s manual,
August 2007.

[9] J.Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. 2004.

[10] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal
of the ACM, 27(4):831–838, 1980.

[11] D. Leijen and J. Hall. Optimize managed code for multi-core ma-
chines. MSDN Magazine, October 2007.

[12] Z. G. Mou. A Formal Model for Divide-and-Conquer and Its Parallel
Realization. PhD thesis, Yale University, May 1990.

[13] Z. G. Mou and P. Hudak. An algebraic model for divide-and-conquer
algorithms and its parallelism. The Journal of Supercomputing, 2(3):
257–278, November 1988.

[14] J. Reinders. Intel Threading Building Blocks. O’Relley, 2007.
[15] e. S. Peyton Jones. Harnessing the multicores: Nested data parallelism

in haskell. In Foudations of Software and Theoretical Computer
Science, Bangalore 2008.

[16] J. Sustafson. Reevaluating amdahl’s law. Commuinication of the ACM,
21(5):532–533, 1988.

[17] Z.G.Mou and P.Hudak. Program transformation in divide-and-
conquer. to appear.

short description of paper 10 2009/10/26

